Orthotopic Breast Cancer Model – MDA-MB-231-Z

Orthotopic tumor models

Implantation of tumor cells into the organ of origin (“orthotopically”) allows organotypical interaction between tumor cells and surrounding stroma. It has been shown that this interaction affects growth, differentiation, and drug sensitivity of tumor cells. Moreover, tumor cells can spread to metastatic sites in other organs, with specificities comparable to the human situation. However, it must be emphasized that in most orthotopically implanted in vivo models using typical immortalized cell lines metastasis occurs but is very heterogeneous and not detectable in all animals after implantation. ProQinase started working on more reliable in vivo models to address intentions aiming mainly at metastasis. Nevertheless, analysis of the primary tumors of orthotopically implanted cancer cells gives us a very prospective read out when testing a new compound.

MDA-MB-231-Z cells (CPQ-234)

MDA-MB-231 cells (HTB-26) originate from the mammary gland of a breast adenocarcinoma. In order to detect orthotopic growth of implanted cells, a luciferase expressing cell line was initially generated via transfection. In addition, an in vivo subpopulation was isolated via cell rescue and tissue culturing, since in vivo growth was initially not satisfactory (MDA-MB-231-Z).

In vivo bioluminescence measurement

After orthotopic implantation into the fat pads, the growth of the cells will be monitored by callipering. The animals are randomized into treatment groups according to apparent tumor sizes. All tumor tissues will be preserved for determination of tumor weight and tumor volumes at necropsy.

Animal weights will be measured three times weekly. Animal behaviour will be monitored daily.

Study example

Mice bearing orthotopically implanted MDA-MB-231-Z tumors were treated with Gemcitabine and Taxotere.